terça-feira, 9 de dezembro de 2014

Relações Trigonométricas

Exemplo 1
Ao levantar voo, um avião sobe formando com a pista um ângulo de 30º. Considerando que o ângulo formado seja contínuo, determine a altura atingida pelo avião ao percorrer 2 km (2000 metros).
O avião se encontrará a uma altura de 1 km ou 1000 metros.

Exemplo 2
No intuito de medir a altura de uma torre, um topógrafo utilizando um teodolito esquematizou a seguinte situação:
 Determine a altura da torre de acordo com o esquema.
A torre possui aproximadamente 86,6 metros de altura.

Exemplo 3
Deseja–se esticar uma corda do topo de um mastro até um ponto P distante 40 metros da base do mastro. Sabendo que o ângulo formado entre a superfície e a corda é de 60º, determine o comprimento da corda.
 A corda terá comprimento igual a 80 metros.




Créditos:Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Círculo Trigonométrico

A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática que estuda a proporção, fixa, entre os comprimentos dos lados de um triângulo retângulo, para os diversos valores de um dos seus ângulos agudos. (Entre estes ângulos, os de 30º, 45º e 60º são denominados ângulos notáveis.) As proporções entre os 3 lados dos triângulos retângulos são denominadas de seno, cosseno, tangente e cotangente, dependendo dos lados considerados na proporção.
Já o Círculo Trigonométrico é um recurso criado para facilitar a visualização destas proporções entre os lados dos triângulos retângulos. Ele consiste em uma circunferência orientada de raio unitário, centrada na origem dos 2 eixos de um plano cartesiano ortogonal, ou seja, um plano definido por duas retas perpendiculares entre si, ambas com o valor 0 (zero) no ponto onde elas se cortam. Existem dois sentidos de marcação dos arcos no círculo: o sentido positivo, chamado de anti-horário, que se dá a partir da origem dos arcos até o lado terminal do ângulo correspondente ao arco; e o sentido negativo, ou horário, que se dá no sentido contrário ao anterior.

Seno

Dado um triângulo retângulo, o seno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o seno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo vertical.

Cosseno

Dado um triângulo retângulo, o cosseno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto adjacente a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o cosseno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo horizontal.
Como o cosseno é esta projeção, e o raio do círculo trigonométrico é igual a 1, segue que, \forall x\in\mathbb{R},-1\leq\operatorname{cos}(x)\leq1, ou seja, a imagem do cosseno é o intervalo fechado [-1,1].

Tangente

Dado um triângulo retângulo, a tangente de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento do cateto adjacente a ele, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.
No círculo trigonométrico, o valor da tangente de um ângulo qualquer pode ser visualizado na reta vertical que tangencia este círculo no ponto em que ele corta o eixo horizontal do lado direito. Nesta reta tangente ao círculo trigonométrico, o valor da tangente trigonométrica de qualquer ângulo é representado pelo segmento que vai do ponto em que ela corta o eixo horizontal até o ponto em que ela corta a reta que contém o raio do círculo trigonométrico para o ângulo considerado. Para avaliar este valor, deve-se compará-lo com o raio do círculo trigonométrico que, por definição, é igual a 1, de preferência quando este raio se encontra sobre a parte superior do eixo ortogonal vertical. Observe que, enquanto o seno e o cosseno são sempre menores do que o raio do círculo trigonométrico e, portanto, menores do que 1, a tangente trigonométrica pode ser tanto menor quanto maior do que 1.

Triângulo Retângulo

Todo triângulo que tem um ângulo de 90°(ângulo reto) é denominado triângulo retângulo. O triângulo ABC tem um ângulo reto e é denominado triângulo retângulo:
Onde:
a: hipotenusa;
b e c: catetos;
h: altura relativa à hipotenusa;
m e n: projeções ortogonais dos catetos sobre a hipotenusa.

Relações métricas no triângulo retângulo

Chamamos relações métricas no triângulo retângulo às relações existentes entre os diversos segmentos desse triângulo. Assim, para um triângulo retângulo ABC, podemos estabelecer as seguintes relações entre as medidas de seus elementos:
- O quadrado de um cateto é igual ao produto da hipotenusa pela projeção desse cateto sobre a hipotenusa.
- O produto dos catetos é igual ao produto da hipotenusa pela altura relativa à hipotenusa.
- O quadrado da altura é igual ao produto das projeções dos catetos sobre a hipotenusa.
- O quadrado da hipotenusa é igual à soma do quadrado dos catetos(teorema de Pitágoras).

Teorema linear de Tales

O teorema linear de Tales estabelece as relações existentes entre os segmentos determinados quando um feixe de paralelas é cortado por duas ou mais transversais.
Considere as retas a, b, c, paralelas duas a duas, e as transversais r e s. nesta situação, as medidas dos segmentos determinados em r são diretamente proporcionais às medidas dos segmentos correspondentes na reta s.
ou ainda
Uma aplicação do teorema de Tales está no estabelecimento das condições de semelhança entre dois triângulos obtidos quando a partir do lado de um deles, traçamos uma paralela a outro.
Se PQ//CB, então:
Como os lados são proporcionais dizemos que os triângulos são semelhantes.


http://www.infoescola.com/trigonometria/triangulo-retangulo/

Trigonometria

Estudos relacionados à Trigonometria.Trigonometria (trigono: triângulo e metria: medidas) é o estudo da Matemática responsável pela relação existente entre os lados e os ângulos de um triângulo. Nos triângulos retângulos (possuem um ângulo de 90º), as relações constituem os chamados ângulos notáveis, 30º, 45º e 60º, que possuem valores constantes representados pelas relações seno, cosseno e tangente. Nos triângulos que não possuem ângulo reto, as condições são Dois triângulos são ditos semelhantes se um pode ser obtido pela expansão uniforme do outro. Este é o caso se, e somente se, seus ângulos correspondentes são iguais. O fato crucial sobre triângulos semelhantes é que os comprimentos de seus lados são proporcionais. Isto é, se o maior lado de um triângulo é duas vezes maior que o lado do triângulo similar, então o menor lado será também duas vezes maior que o menor lado do outro triângulo, e o comprimento do lado médio será duas vezes o valor do lado correspondente do outro triângulo. Assim, a razão do maior lado e menor lado do primeiro triângulo será a mesma razão do maior lado e o menor lado do outro triângulo.

Usando estes fatos, definem-se as funções trigonométricas, começando pelos triângulos retângulos (triângulos com um ângulo reto 90 graus ou π/2 radianos). O maior lado em um triângulo qualquer é sempre o lado oposto ao maior ângulo e devido a soma dos ângulos de um triângulo ser 180 graus ou π radianos, o maior ângulo em um triângulo retângulo é o ângulo reto. O maior lado nesse triângulo, consequentemente, é o lado oposto ao ângulo reto, chamado de hipotenusa e os demais lados são chamados de catetos.

Dois triângulos retângulos que compartilham um segundo ângulo A são necessariamente similares, e a proporção (ou razão) entre o comprimento do lado oposto a A e o comprimento da hipotenusa será, portanto, a mesma nos dois triângulos. Este valor será um número entre 0 e 1 que depende apenas de A. Este número é chamado de seno3 de A e é escrito como \operatorname{sen}(A). Similarmente, pode-se definir :

o cosseno (ou co-seno) de A: é a proporção do comprimento do cateto adjacente ao ângulo A em relação ao comprimento da hipotenusa
a tangente trigonométrica de A: é a proporção do comprimento do cateto oposto ao ângulo A em relação ao comprimento do cateto adjacente
a co-tangente de A: é a proporção do comprimento do cateto adjacente ao ângulo A em relação ao comprimento do cateto oposto - é o inverso da tangente
a secante trigonométrica de A: é a proporção do comprimento da hipotenusa em relação ao comprimento do cateto adjacente ao ângulo A - é o inverso do cosseno
a co-secante de A: é a proporção do comprimento da hipotenusa em relação ao comprimento do cateto oposto ao ângulo A - é o inverso do seno.adaptadas na busca pela relação entre os ângulos e os lados.
A trigonometria possui inúmeras aplicações nos diversos ramos da ciência, sendo considerada uma importante aliada do mundo moderno.
Observe os exemplos a seguir:

Exemplo 1 Ao decolar, um avião sobe formando um ângulo de 30º com a pista (horizontal). Na direção do percurso existe uma torre de transmissão de energia elétrica situada a 3km do aeroporto e com altura igual a 150 metros. Verifique se, mantendo o trajeto, o avião pode colidir com a torre.

Esquema da situação:
Usaremos a relação da tangente
O avião não irá colidir com a torre, pois essa possui 150 metros enquanto o avião estará a uma altura de 1700 metros.

Exemplo 2 
Do ponto A, uma pessoa observa o topo de uma torre sob um ângulo de 60º. Determine a altura da torre, sabendo que a pessoa está a 20 metros dela.
A torre tem 34 metros de altura.
Exemplo 3
Uma inclinação tem 40 metros de comprimento e forma com o plano horizontal um ângulo de 30º. A que altura está situado o ponto mais alto da inclinação?


Créditos: Mundo educação.